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Abstract

Category theory is an algebraic framework based on the composition of functions. Cat-
egories consist of objects and morphisms between objects. A dagger category is a type
of category which has a notion of reversibility for each morphism. A monoidal category
is one which allows the joining of objects and of morphisms in parallel, rather than
in series as with composition. This joining is done in such a way as to satisfy certain
coherence conditions.

The categories of real and of complex Hilbert spaces with bounded linear maps are
dagger monoidal categories and have received purely categorical characterisations by
Chris Heunen and Andre Kornell. This characterisation is achieved through Solèr’s
theorem, a result which shows that certain orthomodularity conditions on a Hermitian
space over an involutive division ring result in a Hilbert space with the division ring
being either the reals, complexes or quarternions.

The Heunen-Kornell characterisation makes use of a monoidal structure, which in turn
excludes the category of quarternionic Hilbert spaces. We provide an alternative char-
acterisation without the assumption of monoidal structure on the category. This new
approach not only characterises the categories of real and of complex Hilbert spaces,
but also the category of quaternionic Hilbert spaces.
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The world is all that is the
case.

Ludwig Wittgenstein

1
Introduction

The theory of Hilbert space is deeply geometric. Euclidean space; a complete finite
dimensional space commonly used to represent a state and phase space in classical
physics, facilitates the classical notions of length and angle. Hilbert space extends
these notions to an infinite dimensional setting while retaining the notion of complete-
ness.

The mathematical formalism of Hilbert space for quantum theory was developed by
John von Neumann in 1932 with his seminal work Mathematische Grundlagen der
Quantenmechanik (The Mathematical Foundations of Quantum Mechanics) [21], and
in 1936, Garrett Birkhoff and John von Neumann showed that each physical system
can be characterised by its property lattice, which is a complete, atomistic othocomple-
mented lattice that arises from the primitive notions of state, property and observable.
In fact, the property lattice of a physical system which reflected the physical quali-
ties of the system was found to be isomorphic to the orthomodular lattice of closed
subspaces of a Hilbert Space, emphasising the importance of orthogonal projections
onto linear subspaces [2]. In 1995 Maria Pia Solèr proved a remarkable theorem [20]
which characterises Hilbert spaces using orthomodular spaces: Hermitian spaces which
can be linearly decomposed into the orthogonal projections to a closed subspace and
its complement. Solèr uses an infinite dimensional orthomodular space over an invo-
lutive division ring and states that if such a space contains an infinite orthonormal
system then that division ring is necessarily the real numbers R, complex numbers C
or quaternions H with the associated orthomodular space being a Hilbert space over
the respective scalars. In 2022, Chris Heunen and Andre Kornell use Solèr’s theorem in
their noteworthy paper Axioms for the category of Hilbert spaces [9] to characterise the
category of K-Hilbert spaces and bounded K-linear maps, HilbK , in purely categorical
terms for K equal to R or C. Axioms (T) on page 1 [9] introduces a monoidal structure
on the category which forces the scalars K to be commutative and hence excludes the
possibility for K to be the quaternions.

In this thesis we will explore the categorical structure required to characterise HilbK
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for K equal to R,C or H. This means we have to create a suitable list of conditions
on a category C to establish an equivalence with HilbK . To achieve this we exclude
the assumption of a monoidal structure and alter the associated unit to instead be a
chosen object which is a simple generator rather than a simple monoidal generator and
make this an axiom to replace (T). The rest of our axioms resemble all but (T) and
thus many of the arguments towards the equivalence resemble those found in [9] except
where the monoidal structure comes into effect and in particular when the commuta-
tivity of the scalars is used.

In Chapter 2 we will briefly introduce relevant algebraic structures from monoids to
modules with their respective categories and then introduce Hermitian and Hilbert
spaces. A structural view of the division rings R,C and H is presented with the pur-
pose to understand familiar theorems from functional analysis in the real and complex
setting to then be extended to apply to the quaternionic case.

In Chapter 3 we begin building the structure on a locally small category C with a
chosen object G by equipping the category with a biproduct ⊕ : C × C → C. This
is the first step towards a notion of linear structure on the hom-sets when we define
a compositionally defined scalar multiplication · : C(G,H) × C(G,G) → C(G,H).
This motivates directing attention to C(G,G) which will become the base algebra for
a semimodule C(G,H) for some object H of C.

In Chapter 4 we look at dagger category theory and work through the preliminary
propositions and lemmas which will be used throughout. We investigate the effect of
the dagger structure on hom-sets of the form C(G,H) and eventually show this hom-
set to be a Hermitian space with a dagger defined Hermitian form and scalars C(G,G).
Much of this section is a study of work from [7–10, 18, 19].

In Chapter 5 we show that the system of dagger subobjects of H denoted Sub†(H)
is a complete ortholattice and is isomorphic to the ortholattice of closed subspaces of
C(G,H). Completeness of Sub†(H) requires the wide subcategory Cdm consisting of
the dagger monomorphisms to have directed colimits.

Our main result appears in Chapter 6, where we show that C(G,H) is a Hilbert space
with scalars C(G,G) isomorphic to R,C or H. Finally, we show a dagger equivalence
between C and HilbC(G,G).

In Chapter 7 we introduce dagger monoidal structure and compare our characteri-
sation with the characterisation found in [9].
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Algebraic Structures and Hilbert Space

This is mostly a preliminary introduction to a few of the algebraic structures we will
encounter in the coming chapters as well as Hilbert spaces and their relevant theorems.
It is important to note that while the structure of a Hilbert space may seem like a
purely analytical construction we will make use of Solèr’s theorem, a miraculous result
that allows for the characterisation of real, complex or quaternionic Hilbert spaces in
a purely algebraic sense. The division rings R,C and H are of special interest for this
project and it will be essential to understand how inner product spaces over either C or
H can be equivalent to a real inner product space equipped with additional structure.

2.1 Categories

Definition 2.1.1 (Category). A category C consists of:

• A collection of objects denoted obC.

• For each A,B ∈ obC, a collection of morphisms C(A,B). Sometimes morphisms
are also referred to as maps or arrows and diagrammatically written as,

A
f // B

• For each A,B,C ∈ obC, a composition operation

◦ : C(B,C)×C(A,B)→ C(A,C)

(g, f) 7→ g ◦ f

and diagrammatically written as commuting diagrams,

A

f

""

g◦f // C

B

g

<<
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• This composition is associative which is to say it is subject to the condition that

(h ◦ g) ◦ f = h ◦ (g ◦ f).

• For each A ∈ obC, an identity morphism idA : A → A (and sometimes written
1A or 1 when the context is understood) where for each f ∈ C(A,B) and g ∈
C(B,A), f ◦ idA = f and idA ◦ g = g.

Definition 2.1.2 (Subcategory). A subcategory D of a category C is a category which
has obD ⊆ obC and D(A,B) ⊆ C(A,B) for each A,B ∈ obD, with composition and
identities as defined in C. If obD = obC then D is called a wide subcategory of C. If
D(A,B) = C(A,B) for each A,B ∈ obD, then D is called a full subcategory of C.

If for each object A,B in C the collection of morphisms C(A,B) forms a set, we
say that C is locally small and that C(A,B) is the hom-set of A and B. An important
example of a locally small category is the category of sets and set-functions, denoted
Set. Since all of the categories mentioned in this text are subcategories of Set, we will
assume categories are locally small.

Many algebraic structures sit in their own category which consists of all such alge-
braic structures and the structure preserving maps between them. The following is a
list of some of the relevant algebraic structures as well as their corresponding categories.

A monoid (M, ·, 1) consists of a set M with an element 1 called the identity together
with a composition/multiplication operation · : M ×M →M : (a, b)→ a · b where for
each a, b, c ∈M ,

• (ab)c = a(bc)

• 1a = a1 = a

Given two monoids (M, ·, 1M) and (N, ·, 1N), a monoid homomorphism is a function
f : M → N which preserves the monoid structure in the sense that for each a, b ∈M ,

• f(ab) = f(a)f(b)

• f(1M) = 1N

A commutative monoid is a monoid where ab = ba for each a, b ∈ M . The cate-
gory of monoids and monoid homomorphisms is denoted Mon and the category of
commutative monoids is denoted CMon and is a full subcategory of Mon.

Example 2.1.3. For any object A ∈ obC in a category C, the hom-sets C(A,A) form
a monoid under composition with the monoid identity being idA.

A group is a monoid (G, ·, 1) where for each a ∈ G there exists an inverse a−1 for
which aa−1 = a−1a = 1. When this monoid is commutative, G is called an abelian
group. A group homomorphism is a function f : G → H between groups G and H
which preserves the monoid structure, and therefore also preserves inverses in that
f(a−1) = f(a)−1 for each a ∈ G. The category of groups and group homomorphisms
is denoted Grp and is a full subcategory of Mon. The category of Abelian groups is



2.1 Categories 5

denoted Ab and is a full subcategory of both CMon and Grp. The following diagram
shows the full subcategory inclusion for some of the categories mentioned so far:

Mon

CMon

66

Grp

gg

Ab

hh 77

A semiring (R,+, ·, 0, 1) consists of a commutative monoid (R,+, 0) with respect to
an addition operation + : R×R→ R and a monoid (R, ·, 1) with respect to a multipli-
cation operation · : R × R → R. These addition and multiplication operations satisfy
the left and right distributivity conditions for each a, b, c ∈ R,

• a(b+ c) = ab+ ac

• (a+ b)c = ac+ bc

A semiring homomorphism is a function f : R → S between two semirings R and S
which preserves the + and · monoid structures. The category of semirings and semiring
homomorphisms is denoted Rig, with the word rig refering to the word ring without
the letter ’n’, signifying the exclusion of negation1.

Example 2.1.4. In the next chapter we will discuss a categorical structure called
a biproduct and prove the following result: For any object A in a category C with
biproducts, the hom-set C(A,A) becomes a semiring with multiplication structure
given by composition and biproduct defining addition.

A ring is a semiring (R,+, ·, 0, 1) for which (R,+, 0) is an abelian group. A commu-
tative ring is a ring for which (R, ·, 1) is a commutative monoid. A ring homomorphism
is a function f : R→ S between two rings which preserves the monoid and group struc-
ture of the addition and multiplication respectively. The category of rings and ring
homomorphisms is denoted Ring and is a full subcategory of Rig. The category of
commutative rings is denoted CRing and is a full subcategory of Ring.

A division ring2 is a ring (R,+, ·, 0, 1) with (R\{0}, ·, 1) as a group. The category
of division rings is denoted DRing and is a full subcategory of Ring.

A field is a division ring (K,+, ·, 1, 0) which is commutative in the sense that (K, ·, 1)
is a commutative monoid. The category of fields and field homomorphisms is denoted
Field and is a full subcategory of both CRing and DRing.

An involution on a rig K is an operation ∗ : K → K such that for each a, b ∈ K,
(a∗)∗ = a, (a+ b)∗ = a∗ + b∗ and (a · b)∗ = b∗ · a∗.

Example 2.1.5. • The field of real numbers R is a division ring with involution
being the identity operation so that for any a ∈ R we have a∗ = a.

1While some authors use ‘rig’ only in the commutative case, we will include the non-commutative
case in our definition.

2A division ring is sometimes called a skew field as in [20].
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• The field of complex numbers C is a division ring with involution being complex
conjugation where for each z ∈ C we have z∗ = z. Complex numbers may be
presented using pairs of real numbers so that a complex number z = a + ib for
a, b ∈ R and imaginary unit i satsifying i2 = −1. Complex conjugation is then
a+ ib = a− ib.

• The division ring of quaternions H is a division ring with involution being quater-
nionic conjugation where for q ∈ H we have q∗ = q. Similar to complex num-
bers, quaternionic numbers may be presented using quadruples of real numbers
a, b, c, d ∈ R with a quaternion q = a + bi + cj + dk and imaginary units i, j, k
saysifying i2 = j2 = k2 = −1 and ij = k, jk = i and ki = j. Conjugation is then
a+ bi+ cj + dk = a− bi− cj − dk.

The following diagram shows this full subcategory inclusion.

Rig

Ring

OO

CRing

66

DRing

hh

Field

hh 66

2.2 Modules

Definition 2.2.1. (Right Semimodule) Let K be a semiring. A right K-semimodule is
a commutative monoid (M,+, 0) together with a scalar multiplication · : M ×K →M
where for each λ, µ ∈ K and u, v ∈M ,

• additive distributivity : (u+ v) · λ = u · λ+ v · λ

• scalar distributivity : v · (λ+ µ) = v · λ+ v · µ

• associativity of scalar multiplication: (v · λ) · µ = v · (λµ)

• scalar identity: v = v · 1

Example 2.2.2. The hom-set C(A,B) for any A,B ∈ obC of a category C with
biproducts is a semimodule over the semiring C(A,A), a result that is explored in
Chapter 3.

Definition 2.2.3. (Right Module) A right K-semimodule (M,K,+, ·, 0) is called a
right K-module when (M,+, 0) is an abelian group. When K is a division ring, a right
K-module is usually called a right K-vector space. The division ring K of a right
K-vector space M we refer to as the scalars and the elements of M as vectors. If
K has commutative multiplication we often drop the word right and speak simply of
K-modules or K-vector spaces
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Example 2.2.4. Any right semimodule (M,+, ·, 0M) over a ring (R,+, ·, 0M , 1) is a
module since −1 ∈ R and for each u ∈M we have u · (−1) ∈M and so u ·1+u · (−1) =
u · (1 + (−1)) = u · 0R = 0M and so u has an inverse −u = u · (−1) making (M,+, 0M)
an abelian group.

Definition 2.2.5 (Module Homomorphism). A module homomorphism T : U → V
between right K-modules U and V is a function where for each u, v ∈ U and λ ∈ K
we have,

• T (u+ v) = Tu+ Tv

• T (u · λ) = Tu · λ

When U and V are right K-vector spaces we call T : U → V a K-linear map or just
linear map when K is understood.

Definition 2.2.6 (Direct Sum). A direct sum of two right K-modules H and K is
defined as,

H ⊕K := {(h, k) | h ∈ H, k ∈ K}

with the expected addition and scalar multiplication. The category of right K-modules
and module homomorphisms is denoted ModK . When K is a division ring we may
write VectK instead of ModK .

Example 2.2.7. • Previously we said that complex numbers can be presented as
combinations of real numbers with an imaginary unit i. A similar notion applies
to real and complex vector spaces. A complex vector space is equivalent to a real
vector space V equipped with a linear map s : V → V satisfying s2 = −1. The
scalar multiplication by i is given by the action of s. In this way s corresponds
to i. Linear maps on complex right vector spaces characterised in this way are
the linear maps on a real vector space V that commutes with s.

• Similarly, a quaternionic right vector space is equivalent to a real vector space V
together with linear maps s, t : V → V that satisfy s2 = t2 = −1 and ts = −st.
Like before, these linear maps act on V as the quaternionic imaginary units
would in the sense that s corresponds to i, t to j and ts to k. Linear maps on
quaternionic right vector spaces characterised in this way are the linear maps on
a real vector space V that commute with s and t.

Definition 2.2.8 (Hermitian Form). Let K be a division ring with involution. For a
right K-vector space V , a Hermitian form on V is an operation 〈·, ·〉 : V × V → K
which takes a pair (u, v) to an element 〈u, v〉 in K and satisfies the following,

1. ∀u, v ∈ V , 〈u · λ, v〉 = 〈u, v〉λ and 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

2. ∀u, v ∈ V , 〈u, v〉 = 〈v, u〉∗

A right K-vector space with a Hermitian form is called a right K-Hermitian space. A
Hermitian form is nonsingular if,

• If ∀v ∈ V , 〈a, v〉 = 0 or equivalently ∀v ∈ V , 〈v, a〉 = 0, then a = 0
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Remark 2.2.9. Antilinearity in the second argument follows from conditions 1 and 2 so
that also

3. ∀u, v ∈ V , 〈u, v · λ〉 = λ∗〈u, v〉 and 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉.

Definition 2.2.10 (Orthogonality). Let (U, 〈·, ·〉) be a Hermitian space. Two vectors
u, v ∈ U are said to be orthogonal, written u ⊥ v, when 〈u, v〉 = 0. Let V,W be
subspaces of U ; then V is orthogonal to W , written V ⊥ W , when v ⊥ w for each
v ∈ V and w ∈ W . The orthogonal complement to a subspace V ⊆ U is the subspace
V ⊥ ⊆ U such that,

V ⊥ := {u ∈ U | ∀v ∈ V, u ⊥ v}

Definition 2.2.11 (Closed Subspace). A subspace F of a Hermitian space V is said
to be closed when (F⊥)⊥ = F .

Definition 2.2.12 (Direct Sum). The direct sum of two right Hermitian spaces H and
K is defined as their direct sum H ⊕K as modules with the Hermitian form defined
for each (h1, k1), (h2, k2) ∈ H ⊕K as,

〈(h1, k1), (h2, k2)〉 := 〈h1, h2〉H + 〈k1, k2〉K

Definition 2.2.13 (Orthomodular Space). A Hermitian space V is called orthomodular
if for any closed subspace F ⊆ H we have H = F ⊕ F⊥.

Definition 2.2.14 (Orthonormal system). A set of vectors (ei)i∈I ⊂ H in a Hermitian
space V with index set I is said to be an orthogonal system if 〈ei, ej〉 = 0 for each
i, j ∈ I when i 6= j, and is orthonormal when moreover 〈ei, ei〉 = 1 for each i ∈ I.

2.3 Hilbert Spaces

Definition 2.3.1 (Inner Product). Let K = R,C or H with the usual involutions. An
inner product on a right K-vector space V is a Hermitian form 〈·, ·〉 : V ×V → K that
is positive definite in that,

• 〈v, v〉 ∈ R, 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

A right K-vector space with an inner product is called an inner product space.

Definition 2.3.2 (Norm). Let 〈·, ·〉 : V × V → K be an inner product, we call the
map ‖ · ‖ : V → R defined by ‖v‖ = 〈v, v〉1/2 the induced norm. The norm of a linear
map T : U → V is defined as

‖T‖ := sup{‖Tx‖ : ∀x ∈ U, ‖x‖ ≤ 1}

Definition 2.3.3 (Bounded Linear Map). Let T : H → K be a linear map between
inner product spaces U and V . T is bounded in the induced norm when there exists
an M ∈ R such that,

‖T‖ ≤M
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Definition 2.3.4 (Adjoint). Let f : U → V be a bounded linear map between two
right inner product spaces (U, 〈·, ·〉U) and (V, 〈·, ·〉V ). The adjoint to f , if it exists, is a
linear map f † : V → U where for each v ∈ V and u ∈ U ,

〈f †(v), u〉U = 〈v, f(u)〉V

A linear map f : U → U is called self adjoint when f = f † and unitary when f is
invertible and for each u, u′ ∈ U ,

〈f(u), f(u′)〉V = 〈u, u′〉U

Example 2.3.5. (i) Continuing with our familiar examples, a real inner product
space V with inner product [·, ·] : V × V → R together with a linear map
s : V → V such that s2 = −1 and s† = −s, with respect to [·, ·], is equivalent to a
complex inner product space with the inner product 〈·, ·〉C : V × V → C defined
as,

〈u, v〉C := [u, v]− [su, v]i

• (ii) Similarly, a real inner product space V with inner product [·, ·] : V × V → R
together with linear maps s, t : V → V such that s2 = t2 = −1, ts = −st,
s† = −s and t† = −t is equivalent to a quaternionic inner product space with the
inner product 〈·, ·〉H : V × V → H defined as,

〈u, v〉H := [u, v]− [su, v]i− [tu, v]j − [tsu, v]k

Lemma 2.3.6. Let s, t : V → V be the linear maps from the example above. For any
u ∈ V , we have u ⊥ su, u ⊥ tu and u ⊥ tsu.

Proof. It follows from the symmetry of the real inner product that,

[sx, x] = [x, s†x] (by adjoint)

= [x,−sx] (since s† = −s)
= −[x, sx] (by linearity)

= −[sx, x] (by symmetry)

and so [sx, x] = 0. A similar argument can be made for t. Now,

[tsu, u] = [−stu, u] = [tu, su] = [u,−tsu] = −[u, tsu] = −[tsu, u]

and hence [tsu, u] = 0.

Theorem 2.3.7. Let K = C or H and (V, [·, ·]) be a K-inner product space. Then for
each x ∈ V ,

[x, x] = 〈x, x〉C = 〈x, x〉H

Proof. We will only show the quaternionic case. It follows directly from the above
lemma that for each x ∈ V ,

〈x, x〉H = [x, x]− [sx, x]i− [tx, x]j − [tsx, x]k

= [x, x]− 0i− 0j − 0k

= [x, x]



10 Algebraic Structures and Hilbert Space

This is a very convenient theorem and means that any statements about bounded-
ness that apply to real inner product spaces can also apply to complex or quaternionic
inner product spaces. This includes statements about completeness as in the following
definition.

Definition 2.3.8 (Right Hilbert Space). Let K = R,C or H. A right K-Hilbert space
(H, 〈·, ·〉 : H ×H → K) is a right inner product space that is complete in the induced
norm ‖ · ‖ = 〈·, ·〉1/2, which is to say that all Cauchy sequences of H converge in H.

An equivalent statement for completeness is to say that if a sequence {xn}∞n=1 of
vectors in H satisfies

∑∞
n=1 ‖xn‖ < ∞, then there exists a vector x ∈ H such that

‖x −
∑N

n=1 xn‖ → 0 as N → ∞. In other words, every absolutely convergent series
converges.

Theorem 2.3.9. Let K = R,C or H and T : H → H ′ be a linear map between
K-Hilbert spaces H and H ′. If T has an adjoint T † then T is bounded.

Proof. Let (xn) be a sequence in H such that xn → x and Txn → z when n→∞. Then
for each y ∈ K, 〈Txn, y〉 → 〈z, y〉 but also 〈Txn, y〉 = 〈xn, T †y〉 → 〈x, T †y〉 = 〈Tx, y〉.
It follows from the uniqueness of limits that Tx = z. By theorem 4.13-3 in [14], T
is a closed linear operator and then by the closed graph theorem 4.13-2 in [14] T is
bounded. Theorem 2.3.7 guarantees this holds for H.

The category of K-Hilbert spaces and bounded linear maps is denoted HilbK and
is the star3 category of this thesis.

Definition 2.3.10 (Basis). Let H be a right K-Hilbert space and let E := {ei}i∈I be
a family of elements of H, indexed by a set I. The family E is called an orthogonal
basis of H if it satisfies the following conditions:

• E is an orthogonal system.

• If I = N and a ∈ H, then there exists a family of coefficients {ai ∈ K | i ∈ N}
such that ‖a−

∑n
i=1 aiei‖ → 0 as n→∞.

If E is also an orthonormal system we say that E is an orthonormal basis.

Theorem 2.3.11 (Page 168 [14]). Each Hilbert space has an orthonormal basis.

Definition 2.3.12 (Dimension). The dimension of a Hilbert space H is the cardinality
of an orthonormal basis of H.

The dimension of a Hilbert space is well defined by the fact that any two orthonor-
mal bases of the same Hilbert space have the same cardinality.

Theorem 2.3.13 (Theorem 3.6-5 [14]). Let K = R or C. Two right K-Hilbert spaces
H and H̃ are isomorphic if and only if they have the same dimension.

Theorem 2.3.14. Let K = R,C or H. Any bounded K-linear map T : H → H on an
infinite dimensional K-Hilbert space H can be decomposed into a linear combination
of unitary maps.

3Categories such as Hilb are dagger categories, discussed in chapter 3. The term dagger referres
to the † notation in physics signifying the adjoint. Historically the ∗ symbol has been to signify such
operations and categories such as Hilb were referred to as star categories.
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Proof. See appendix A

In 1995, Maria Pia Solèr developed a characterisation of Hilbert spaces using or-
thomodular spaces. This is a theorem that is inspired by results in quantum logic by
Birkhoff and von Neumann in the mid 1930s [2], and built on the work by Kaplansky on
infinite dimensional quadratic forms in the 1950s [11] and Piron’s representation theo-
rem which proved a correspondence between propositional systems and orthomodular
spaces in the 1960s [16]. Solèr’s theorem is originally stated as follows:

Theorem 2.3.15 (Solèr’s Theorem [20]). Let (E, 〈·, ·〉) be an infinite dimensional or-
thomodular space over a division ring K which contains an orthonormal system (ei)i∈N.
Then K is either R, C or H, and (E, 〈·, ·〉) is a Hilbert space over K.

The categorical characterisation of HilbK for K = R,C by Heunen and Kornell [9]
uses Solèr’s theorem to build an equivalence of categories. We will use Solèr’s theorem
in the same way for our characterisation of HilbK for K = R,C,H.
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3
Biproducts

In this chapter we introduce a way to construct objects from existing objects in a
category C using a type of limit called a biproduct. We will then explore the structure
that is inherited by hom-sets of the form C(A,A) and C(A,B) when C has biproducts.

3.1 Biproducts

Definition 3.1.1 (Zero Object). A zero object in a category is an object O which
has unique morphisms 0A : A → O and 0A : O → A for each object A. Between
any two objects A and B in a category with a zero object there is a unique morphism
0BA : A→ O → B with 0BA = 0B ◦ 0A called the zero morphism.

Lemma 3.1.2. Zero morphisms have the following properties:

1. 0A ◦ 0A = 1O.

2. Zero objects are unique up to isomorphism.

3. For each f : A→ B and each X, it follows that 0XB ◦ f = 0XA and f ◦ 0AX = 0BX .

Proof. 1. O → A→ O = 1O by uniqueness.

2. Let O and O′ be zero objects then there exists unique morphisms O → O′ and
O′ → O, it follows from uniqueness that O → O′ → O = 1O and O′ → O →
O′ = 1O′ and so O ∼= O′.

3. Any map A→ B which composes with a zero morphism factors through the zero
object so A → B → O → X = A → O → X and X → O → A → B = X →
O → B by uniqueness.

Definition 3.1.3 (Biproduct). Let C be a category with zero objects. A biproduct of
C-objects A and B is a C-object A⊕B that is both a product (A⊕B, pA : A⊕B →
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A, pB : A⊕ B → B) and a coproduct (A⊕ B, iA : A→ A⊕ B, iB : B → A⊕ B) such
that,

pA ◦ iA = 1A pA ◦ iB = 0AB

pB ◦ iA = 0BA pB ◦ iB = 1B

A biproduct of a finite family of objects {Ak}k∈I with index set I is defined anal-
ogously. We then write,

⊕
k∈I Ak with the projections and embeddings satisfying,

pk ◦ ik = 1 and pk ◦ il = 0 for k 6= l.

Given two morphisms f : A → C and g : B → D, the universal properties of the
product and coproduct induce unique morphisms f × g : A × B → C × D and
f + g : A+B → C +D respecitively.

Proposition 3.1.4. When A×B, A+B and C ×D, C +D define biproducts A⊕B
and C ⊕D respectively, the unique maps f × g and f + g are equal.

Proof. The morphisms f×g and f+g denote the unique morphisms induced by the uni-
versal properties of the product and coproduct respectively, satisfying the commuting
diagrams,

A

f

��

A×BpAoo pB //

f×g

��

B

g

��
C C ×DpC
oo

pD
// D

A
i1 //

f

��

A+B

f+g

��

A
i2oo

g

��
C

iC
// C +D D

iD
oo

To see that f × g satisfies the conditions for f + g we will use the fact that two mor-
phisms h, k : A×B → C ×D are equal when pC ◦ h = pC ◦ k and pD ◦ h = pD ◦ k.

Following from the definition of f × g we have,

pC ◦ (f × g) ◦ iA = f ◦ pA ◦ iA = f ◦ idA = f = idC ◦ f = pC ◦ iC ◦ f

and

pD ◦ (f × g) ◦ iA = g ◦ pB ◦ iA = g ◦ 0BA = 0DA = 0DC ◦ f = pD ◦ iC ◦ f

hence (f × g) ◦ iA = iC ◦ f and similarly (f × g) ◦ iB = iD ◦ g. Therefore f × g satisfies
the conditions for f + g and by uniqueness f + g = f × g.

Remark 3.1.5. Because of the above proposition we can use a single morphism to denote
f + g and f × g written as f ⊕ g : A ⊕ B → C ⊕ D for morphisms f : A → C and
g : B → D.
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3.2 Linear Structure

A homset C(A,B) of a category C with binary biproducts has an addition operation
+ : C(A,B)×C(A,B)→ C(A,B), where for each f, g ∈ C(A,B) we define f + g as,

A
f+g //

∆

��

B

A⊕ A
f⊕g

// B ⊕B

∇

OO

Where ∆ : A → A ⊕ A is the diagonal map which satisfies p ◦∆ = 1 and q ◦∆ = 1A
for projections p and q of A⊕A. The morphism ∇ : A⊕A→ A is the codiagonal and
satisfies ∇ ◦ i = 1A and ∇ ◦ j = 1A.

Remark 3.2.1. The notation f + g : A → B denoting this addition of f, g : A → B
may be confused with the notation for the induced morphism defined by the universal
property for the coproduct h+ k : A+B → C +D for h : A→ C and k : B → D. Be
assured that from now on f + g will always denote the addition of f and g.

Lemma 3.2.2. The zero morphism 0BA acts as a unit for (C(A,B),+).

Proof. Firstly, we need to show that iB ◦ f ◦ pA = f ⊕ 0BA. It is enough to show that
pB ◦(iB ◦f ◦pA) = pB ◦(f⊕0BA) and qB ◦(iB ◦f ◦pA) = qB ◦(f⊕0BA) where pA, qA, iA, jA
denote the projections and injections for the biproduct of an object A with itself:

A
iA // A⊕ A
pA

oo
qA

// A
jAoo

The first equation holds due to the following commutative diagram,

B ⊕B pB // B

A⊕ A

f⊕0BA

88

pA
//

f⊕0BA &&

A

0BA
$$

f

::

f
// B

0BB

��

1B

OO

iB
// B ⊕B

pB

dd

qB

zz
B ⊕B qB

// B

The second equation holds by replacing pA, pB with qA, qB respectively in the above
diagram. This together with the definition of the diagonal map yielding pA ◦∆ = 1A
and dually for the codiagonal map ∇ ◦ iB = 1B it follows that,

A
f+0BA //

∆

��
1A

��

B

A⊕ A
f⊕0BA

//

pA

��

B ⊕B

∇

OO

A
f

// B

iB

OO 1B

\\

commutes.
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Lemma 3.2.3. Addition in (C(A,B),+) is commutative.

Proof. Firstly, given the biproduct of A ⊕ B, we show that unique morphisms c× :
A × B → B × A and c+ : A + B → B + A, defined respectively by commutativity of
both,

A×B
q1

zz

p1

$$

c×

��
B B × Ap2

oo
q2

// A

A+B

c+

��
B

j1

::

i2
// B + A A

j2
oo

i1

dd

are equal. Following from the definition of c×, observe that,

p2 ◦ c× ◦ j1 = q1 ◦ j1 = 1B = p2 ◦ i2,
q2 ◦ c× ◦ j1 = p1 ◦ j1 = 0AB = q2 ◦ i2

so that c× ◦ j1 = i2 and similarly c× ◦ j2 = i1. Therefore c× satisfies the conditions for
c+ and by uniqueness c× = c+. We will denote this map c := c× = c+. It follows that,

p ◦ c ◦ (f ⊕ g) = q ◦ f ⊕ g = g = p ◦ g ⊕ f,
q ◦ c ◦ (f ⊕ g) = p ◦ f ⊕ g = f = q ◦ g ⊕ f

and hence,

A⊕ A f⊕g //

c

��

B ⊕B

c

��
A⊕ A

g⊕f
// B ⊕B

commutes. The diagonal map ∆ : A→ A⊕ A relates to c as follows,

p ◦ cA ◦∆ = q ◦∆ = idA = p ◦∆,

q ◦ cA ◦∆ = p ◦∆ = idA = q ◦∆

and hence the triangles,

A
∆

//

∆
$$

A⊕ A

cA

��
A⊕ A

B ⊕B
∇

$$

cB

��
B ⊕B ∇ // B

commute, with the second triangle commuting using a dual argument for the codiagonal
map. Together with the previous commuting square we have the commuting diagram,

A

g+f

99

f+g

��

∆ //

∆

$$

A⊕ A f⊕g //

cA

��

B ⊕B

∇
$$

cB

��
A⊕ A

g⊕f
// B ⊕B

∇
// B
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Lemma 3.2.4. Addition in (C(A,B),+) is associative.

Proof. Let α : (A⊕A)⊕A→ A⊕ (A⊕A) be the associativity isomorphism for ⊕. It
follows that both,

A
∆ //

∆

��

A⊕ A ∆⊕1 // (A⊕ A)⊕ A

α

��
A⊕ A

1⊕∆
// A⊕ (A⊕ A)

(B ⊕B)⊕B

α

��

∇⊕1 // B ⊕B ∇ // B

B ⊕ (B ⊕B)
1⊕∇

// B ⊕B

∇

OO

commute and so the following diagram,

A
(∆⊕1)◦∆

//

(f+g)+h

��

1

**(A⊕ A)⊕ A α //

(f⊕g)⊕h

��

A⊕ (A⊕ A)

f⊕(g⊕h)

��

A
(1⊕∆)◦∆
oo

f+(g+h)

��
B

1

44(B ⊕B)⊕B∇◦(∇⊕1)oo
α

// B ⊕ (B ⊕B)
∇◦(1⊕∇) // B

commutes.

This leads us to the following result.

Theorem 3.2.5. Let C be a category with binary biproducts. Then (C(A,B),+, 0BA)
is a commutative monoid.

Proof. Lemmas 3.2.2, 3.2.3, 3.2.4.

Lemma 3.2.6. Let C be a category with binary biproducts. The action defined as,

· : C(A,B)×C(A,A)→ C(A,B)

(f, λ) 7→ f · λ := f ◦ λ

is distributive over + in C(A,B), i.e. for each λ, µ ∈ C(A,A) and f, g,∈ C(A,B),

• (f + g) · λ = f · λ+ g · λ

• f · (λ+ µ) = f · λ+ f · µ

• f · 0AA = 0BA and 0BA · λ = 0BA

Proof. Given λ ∈ C(A,A), the functoriality of ∆ implies we have ∆ ◦ λ = λ ⊕ λ ◦∆.
For f, g ∈ C(A,B) we have (f ⊕ g) ◦ (λ⊕λ) = (f ◦λ)⊕ (g ◦λ) by the UMP of ⊕. This
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allows,

A λ //

∆

��

A

∆

��

f+g // B

A⊕ A
f⊕g

""
A⊕ A

λ⊕λ

<<

(f◦λ)⊕(g◦λ)
// B ⊕B

∇

OO

to commute and so (f + g) · λ = (f · λ) + (g · λ). In a similar way, the distribution of
f ∈ C(A,B) across + for λ, µ ∈ C(A,A) is given by,

A
λ+µ //

∆

��

A
f // B

A⊕ A
f⊕f

""

∇

OO

A⊕ A

λ⊕µ

<<

(f◦λ)⊕(f◦µ)
// B ⊕B

∇

OO

and so f · (λ + µ) = (f · λ) + (f · λ). The zero identities result from the definition of
the zero morphism.

Theorem 3.2.7. Let C be a category with binary biproducts. Then (C(A,A), ◦,+) is
a semiring and (C(A,B), ·,+) is a right C(A,A)-semimodule.

Proof. Theorem 7.1.3 and Lemma 3.2.6.

3.3 Matrix Notation

Morphsims between biproducts have an associated matrix notation. We write the
projections and embeddings for a biproduct A⊕B as:(

1 0
)

:= pA,
(
0 1

)
:= pB,

(
1
0

)
:= iA,

(
0
1

)
:= iB

Given morphisms f : A → C, g : A → D, h : B → C and k : B → D we write,(
f
g

)
: A→ C⊕D for the unique map for which,

(
1 0

)(f
g

)
= f and

(
0 1

)(f
g

)
= g,

and write
(
f h

)
: A⊕B → C for the unique map for which

(
f h

)(1
0

)
= f . Likewise,

we write

(
f h
g k

)
: A ⊕ B → C ⊕D for the map that satisfies

(
1 0

)(f h
g k

)(
1
0

)
=(

1 0
)(f

g

)
= f and similarly for each other component. We can then write f ⊕

g :=

(
f 0
0 g

)
. Other relevant morphisms with matrix representations are the diagonal
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map ∆ =

(
1
1

)
and the codiagonal map ∇ =

(
1 1

)
. Using the matrix notation the

biproduct may be defined as the following.

Definition 3.3.1 (Biproduct). Let C be a category with zero objects. The biproduct
of C-objects A and B is a C-object A⊕B that is both a product (A⊕B, pA : A⊕B →
A, pB : A⊕ B → B) and a coproduct (A⊕ B, iA : A→ A⊕ B, iB : B → A⊕ B) such
that the map

A+B

1 0
0 1


// A×B

is identity with + and × representing ⊕ as a coproduct and product, respectively.
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4
Dagger Category Theory

4.1 Dagger Categories

The term “dagger” has its roots in the notation for the adjoint of a linear operator
T on a Hilbert space when used in conjunction with the bra-ket notation in quantum
mechanics as in 〈Tx | y〉 = 〈x | T †y〉. This notion has been abstracted using compact
closed categories in the works of [1, 18]. In this setting, the dagger of a quantum
process T : H → K between Hilbert spaces H and K is a reversal of this process and
is represented by T † : K → H. While the physical motivation for dagger categories
is well established [1, 5, 18], there are also mathematical and categorical reasons for
studying dagger categories which are explored in [12].

Definition 4.1.1 (Dagger). A dagger on a category C is a contravariant involutive
endofunctor that acts as the identity on objects, which is to say that a dagger is a
functor † : Cop → C satisfying,

• † : A 7→ A

• † ◦ † = idC

The dagger of a morphism f : A→ B of C is denoted f † : B → A.

Definition 4.1.2 (Dagger Category). A dagger category (C, †) is a category C equipped
with a dagger. In other words, for each object A,B,C ∈ obC and f ∈ C(A,B) and
g ∈ C(B,C).

• id†A = idA

• (f †)† = f

• (g ◦ f)† = f † ◦ g†.

Some examples of dagger categories are:
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• Hilb, the category of Hilbert spaces and bounded linear maps with dagger as the
adjoints to bounded linear maps.

• Rel, the category of sets and relations with dagger R† of a relation R is defined
by bR†a if and only if aRb.

• A monoid M equipped with involution f : Mop → M where the dagger of a
morphism m is m† = f(m).

• Any groupoid, where the dagger is given as f † = f−1 for a morphism f .

• FVect, the category of finite dimensional vector spaces and linear maps is a
dagger category by choosing a basis for each object and then taking transposes
for the dagger; however there is no canonical choice of dagger.

A morphism f : H → K in a dagger category can have special properties that are
analogous to the familiar properties of morphisms found in categories:

(i) dagger monomorphism or isometry : f † ◦ f = idH

(ii) dagger epimorphism or coisometry : f ◦ f † = idK

(iii) dagger isomorphism or unitary morphism: f † ◦ f = idH and f ◦ f † = idK

(iv) idempotent : f ◦ f = f with H = K

(v) projection: f † ◦ f = f with H = K

(vi) self-adjoint: f † = f with H = K

Dagger categories have an inherent notion of duality which is due to the functoriality of
the dagger. A simple example of this phenomenon is seen between (i) and (ii). If f is a
dagger monomorphism as in (i), then f † satisfies (ii) and is thus a dagger epimorphism.

Proposition 4.1.3. The following are some simple statements about these special mor-
phisms:

1. If f : H → K is a dagger monomorphism, then f † is a dagger epimorphism.

2. p : H → H is a projection if and only if f is idempotent and self-adjoint.

Proof. 1. This follows directly from the definition.

2. Suppose p : H → H is a projection, then p† = (p† ◦ p)† = p† ◦ p†† = p† ◦ p = p
and so p is self-adjoint, p† ◦ p = p implies p ◦ p = p and hence p is idempotent.
The converse is shown by direct substitution.

The zero object O, if it exists, in a dagger category retains its usual properties
however, the uniqueness of the morphisms 0A : A → O and 0A : O → A for an object
A means that 0†A = 0A.

Definition 4.1.4 (Dagger Biproduct). Let C be a dagger category with zero object.
A dagger biproduct of two objects H and K is a biproduct H ⊕ K with projections
p : H ⊕K → H, q : H ⊕K → K and embeddings i : H → H ⊕K, j : K → H ⊕K
that satisfy p = i† and q = j†.
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Proposition 4.1.5. Let C be a dagger category with dagger biproducts. Then the
dagger distributes over the ⊕ in the sense that

(f ⊕ g)† = f † ⊕ g†

for each f, g : H → K.

Proof. Observe that for f⊕g : H⊕H → K⊕K defined as the induced map satisfying,

H

f

��

H ⊕H

f⊕g

��

pHoo qH // H

g

��
K K ⊕KpK
oo

qK
// K

as in Remark 3.1.5 we have

pH ◦ (f ⊕ g)† = (f ⊕ g ◦ p†H)† = (f ⊕ g ◦ iH)† = (iK ◦ f)† = f † ◦ i†K = f † ◦ pK ,
qH ◦ (f ⊕ g)† = (f ⊕ g ◦ q†H)† = (f ⊕ g ◦ jH)† = (jK ◦ f)† = f † ◦ j†K = f † ◦ qK

and so (f ⊕ g)† satisfies the conditions for the canonical map f † ⊕ g†. Therefore by
uniqueness (f ⊕ g)† = f † ⊕ g†.

Definition 4.1.6 (Dagger Subobject). Let X be an object of a category C. A subobject
of X is an isomorphism class of monomorphisms with codomain X. A dagger subobject
of X is a subobject of X which contains a dagger monomorphism.

Subobjects are referred to using a representative monomorphism from the isomor-
phism class while dagger subobjects have a representative dagger monomorphism. Two
dagger monomorphisms a : A ↪→ X and b : B ↪→ X represent the same subobject when
there exists an isomorphism h : A→ B with b ◦ h = a, we then say a = b as subobjects
or by abuse of notation, A = B. Such an isomorphism is automatically unitary.

Definition 4.1.7 (Dagger Equaliser). An equaliser for a pair of morphisms f, g : H ⇒
K is a morphism e : E → H such that f ◦ e = g ◦ e and for any morphism x : X → H
that satisfies f ◦ x = g ◦ x there exists a unique morphism h : X → E with x = e ◦ h.
A dagger equaliser is an equaliser which is also a dagger monomorphism. The dual
notion is a dagger coequaliser.

Proposition 4.1.8. If a dagger category C has dagger equalisers then it has dagger
coequalisers.

Proof. Let e : E → A be the dagger equaliser to an arbitrary pair of morphism f, g :
A → B. For each x : X → A that satisfies f ◦ x = g ◦ x we have a unique morphism
h : X → E such that x = e ◦ h i.e.

E
e // A

f //
g

// B

X

x

??

h

OO
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The dagger induces the dual notion so that we have a diagram with reversed arrows,

E

h†

��

A
e†oo

x†

��

B
g†

oo
f†oo

X

The morphism e† is precisely the coequaliser of f † and g†. In this sense, the dagger
sends dagger equalisers in C to dagger coequalisers in C. Thus C has dagger equalisers
and dagger coequalisers.

Definition 4.1.9 (Dagger Kernel). A kernel to a morphism f : H → K is an equaliser
ker f : L → H to the pair f, 0KH : H ⇒ K. The dagger kernel, if it exists, is a
kernel which is also a dagger monomorphism. The dagger kernel to f is denoted ker f .
The dual concept for the dagger kernel of f is the dagger cokernel which is a dagger
epimorphism and is denoted cokf .

Proposition 4.1.10. The kernel to a zero morphism is the identity.

Proof. Trivially, 0B ◦ idB = 0B. For idB to be the kernel to 0B we need idB to satisfy
the universal property. Since any morphism f : A → B satisfies 0B ◦ f = 0A, we can
take f to be the unique morphism such that f = idB ◦ f .

Proposition 4.1.11. Let C be a dagger category with dagger kernels. Then for each
morphism f , ker(f †) = (cokf)† as subobjects.

Proof. This follows directly from Proposition 4.1.8.

Proposition 4.1.12. Let C be a dagger category with dagger equalisers and dagger
biproducts. Then any morphism f of C can be written as f = m ◦ e where m is a
dagger monomorphism and e is an epimorphism.

Proof. Let f : A → B be a morphism of C. The category C has pushouts since any
pair of morphisms A← B → C have a coequaliser and a coproduct by assumption. We
then take m : X → B to be the dagger equaliser to the cokernel pair f1, f2 : B ⇒ C
of f . Then there exists a unique morphism e : A → X such that, f = m ◦ e. By
definition, m is a dagger monomorphism. It remains to show that e is an epimorphism.

It is enough to show that the cokernel pair e1, e2 : X ⇒ P to e are equal. Take
the pushouts P,Q,R and S as seen in the following diagram,

A e //

e

��

X m //

e2

��

B

e′2

��
X e1

//

m

��

P m2

//

m1

��

R

m′1

��
B

e′1

// Q
m′2

// S
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Since f = m ◦ e, it follows from uniqueness of the cokernel pair of f that f1 = m′1 ◦ e′2,
f2 = m′2 ◦ e′1 and S = C. Then,

m′2 ◦m1 ◦ e2 = m′1 ◦ e′2 ◦m
= m′2 ◦ e′1 ◦m (m is an equaliser to f1, f2)

= m′2 ◦m1 ◦ e1

Since m is a dagger monomorphism, stability under pushout means that m1 and m′2
are monomorphisms, hence m′2 ◦m1 is a monomorphism and so e2 = e1.

Remark 4.1.13. A more general result holds for when a category has pushouts, equalis-
ers to cokernel pairs, and any pushout of a regular monomorphism is a monomorphism1.

Definition 4.1.14 (Dagger Kernel Condition). A dagger category C with a zero object
has the dagger kernel condition if each dagger monomorphism f : A → B in C is the
dagger kernel of some morphism g : B → C in C so that f = ker g.

Proposition 4.1.15. Let C be a dagger category with dagger equalisers and the dagger
kernel condition. If f is a dagger monomorphism then f = ker(cokf) as subobjects.

Proof. Let f be a dagger monomorphism. By the dagger kernel condition, f = kerw
for some morphism w. We construct the following diagram and the induced maps r, s
and t to show f = g as subobjects.

C

r

��
A

f :=kerw //

s

��

B w //

cok(kerw)=:l

>>

W

K

g:=ker(cok(kerw))

??

t

OO

w ◦ f = 0 implies there exists a unique r with w = r ◦ l. Then l ◦ f = 0 implies there
exists a unique s with f = g ◦ s. Since,

w ◦ g = (r ◦ l) ◦ g = r ◦ cok(kerw) ◦ ker(cok(kerw)) = r ◦ 0 = 0

there exists a unique t such that g = f ◦ t. Since f and g are dagger monic it follows
that,

f = g ◦ s = (f ◦ t) ◦ s =⇒ 1A = t ◦ s,
g = f ◦ t = (g ◦ s) ◦ t = t ◦ s =⇒ 1K = s ◦ t.

Therefore f = g = ker(cok(kerw)) = ker(cokf) as subobjects.

Corollary 4.1.16. The dual statement holds in the sense that if f is a dagger epimor-
phism then f = cok(ker f) as subobjects.

1See Chapter 2 of [3]
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Proposition 4.1.17. Let C be a dagger category with dagger equalisers and the dagger
kernel condition. Then f is a monomorphism if and only if ker f = 0.

Proof. Suppose f is a monomorphism, then f ◦ker f = 0 = f ◦0 implies ker f = 0. For
the converse, suppose ker f = 0. Let f ◦ g = f ◦ h and let e be the dagger coequaliser
of g and h. Then there is a unique s such that f = s ◦ e. Since e is dagger epic the
dagger kernel condition implies e = cokw for some w. It follows that

f ◦ w = (s ◦ e) ◦ w = s ◦ cok(w) ◦ w = s ◦ 0 = 0

and so there exists a unique t such that w = ker(f) ◦ t and since ker f = 0 we have
w = 0 ◦ t = 0. This implies e = cokw = cok0 and so e is an isomorphism and hence
e ◦ g = e ◦ h implies g = h. Thus f is a monomorphism.

4.2 Scalars

We saw in Theorem 3.2.7 that equipping a category C with a biproduct structure made
the hom-sets C(A,B) a semimodule over the semiring C(A,A). We now look at what
happens when we equip the category with dagger structures.

Theorem 4.2.1. Let C be a dagger category with dagger biproducts and dagger equalis-
ers. Then the right C(A,A)-semimodule (C(A,B),+, ·, 0) with involution † has a left
linear sesquilinear form.

〈·, ·〉 : C(A,B)×C(A,B)→ C(A,A)

(f, g) 7→ 〈f, g〉 := g† ◦ f

Proof. Let λ, µ ∈ C(A,A) and f, g ∈ C(A,B), Linearity in the first argument is a
direct calculation,

• 〈f · λ, g〉 = g† ◦ (f ◦ λ) = (g† ◦ f) ◦ λ = 〈f, g〉 ◦ λ,

• 〈f1 + f2, g〉 = g† ◦ (f1 + f2) = (g† ◦ f1) + (g† ◦ f2) = 〈f1, g〉+ 〈f2, g〉,

The distribution of the dagger over addition holds since,

(f + g)† = (∇ ◦ (f ⊕ g) ◦∆)† = ∆† ◦ (f ⊕ g)† ◦ ∇† = ∇ ◦ f † ⊕ g† ◦∆ = f † + g†.

Conjugate symmetry follows from the contravarience of the dagger,

〈f, g〉 = g† ◦ f = (f † ◦ g)† = 〈g, f〉†.

We now introduce the necessary machinery on a chosen object G to discuss inverses
for the multiplication and addition on C(G,G).

Definition 4.2.2 (Simple Object). An object X in a category with zero object O is
said to be simple when

• 0X 6= 1X
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• 0X and 1X are the only subobjects of X.

The subobjects of a simple object must be the isomorphism classes of either the
zero morphism 0X or the identity 1X . The zero class consists of just the zero morphism
whereas the identity class consists of all isomorphisms f : A→ X.

Proposition 4.2.3. Let C be a category with a simple object G, dagger biproducts and
dagger equalisers. Then C(G,G) is a division semiring with involution.

The proof for the above proposition is essentially the argument for Schur’s lemma.

Proof. We have already established that (C(G,G),+, ◦) is a semiring with involution
λ 7→ λ†. It remains to show that C(G,G) has multiplicative inverses. Let λ ∈ C(G,G)
with λ 6= 0. Then λ factors as λ = m ◦ e where m is a dagger monomorphism and
e is an epimorphism by Proposition 4.1.12. Since G is simple, m must be either 0 or
an isomorphism, and since m ◦ e = λ 6= 0 it follows that m must be an isomorphism.
This makes λ composed of epimorphisms and so λ itself is an epimorphism and λ† is a
monomorphism. Since G is simple λ† must be either 0 or an isomorphism, but λ 6= 0
and so λ† is an isomorphism. Therefore λ is an isomorphism with inverse λ−1.

Definition 4.2.4 (Generators). A family of generators in a category is a collection G
of objects with the property that when given a pair f, g : A ⇒ B, if f ◦ h = g ◦ h for
each h : G → A for every G ∈ G then f = g. When G consists of just one object G
then we say this object a generator.

A different perspective of the generator can be seen in the contrapositive form: If
G is a generator then for f, g : A → B, f 6= g implies there exists a map x : G → A
such that f ◦ x 6= g ◦ x. A generator may also be called a separator.

Proposition 4.2.5. Let C be a dagger category with a simple generator G, dag-
ger biproducts, dagger equalisers and the dagger kernel condition. Then the semiring
C(G,G) is a division ring with involution f 7→ f † for each f : G→ G.

The proof for the above proposition is essentially the proof for Lemma 1 [9].

Proof. Following from the previous result, all that remains to show is that (C,+, ◦)
has additive inverses.

Let
(
x
y

)
:= ker(∇) : K → G ⊕ G. Then x + y = ∇ ◦

(
x
y

)
= 0. Either

(
x
y

)
6= 0 or(

x
y

)
= 0. We will show that additive inverses exist when the former case holds and that

the latter case is impossible.

Suppose
(
x
y

)
6= 0, then without loss of generality, take x 6= 0. The generator prop-

erty of G implies that there exists a z : G→ K such that x ◦ z 6= 0, and so the inverse
(x ◦ z)−1 exists as shown in the above proposition. Now,

1 + (y ◦ z) · (x ◦ z)−1 = ((x ◦ z) + (y ◦ z)) · (x ◦ z)−1

= (((x+ y) ◦ z) · (x ◦ z)−1

= 0

and so 1 has an additive inverse and hence additive inverses exist.
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If
(
x
y

)
:= ker(∇) = 0 then by Proposition 4.1.17, ∇ is a monomorphism. The defi-

nition of ∇ tells us that ∇ ◦ i = ∇ ◦ j, where i and j are the embeddings for G ⊕ G,
but then i = j. It follows that f = g for any two maps f, g : G→ X for any X and in
particular, 1G = 0GG. This contradicts the simplicity of G.

Theorem 4.2.6. Let C be a dagger category with a simple generator G, dagger biprod-
ucts, dagger equalisers and the dagger kernel condition. Then (C(G,A), 〈·, ·〉) is a right
Hermitian space over the division ring C(G,G) where for f, g ∈ C(G,A),

• Addition: f + g := ∇ ◦ (f ⊕ g) ◦∆

• Scalar multiplication: f · λ := f ◦ λ

• Hermitian Form: 〈f, g〉 := g† ◦ f

Proof. Theorems 3.2.7 & 4.2.1 and Proposition 4.2.5

Let f : H → K be a morphism of C. Define the function C(G, f) : C(G,H) →
C(G,K) as sending h : G→ H to f ◦ h : G→ K.

Lemma 4.2.7. Sending H 7→ C(G,H) and f 7→ C(G, f) defines a functor,

C(G,−) : C→ VectC(G,G)

Proof. We know from Theorem 4.2.6 that C(G,H) is a right vector space. For f :
H → K, C(G, f) is linear since for h, k ∈ C(G,H) and λ ∈ C(G,G) we have,

C(G, f)(h · λ+ k) = f ◦ (h · λ+ k)

= f ◦ (h · λ) + f ◦ k
= (f ◦ h) · λ+ f ◦ k
= C(G, f)(h) · λ+ C(G, f)(k)

Composition is preserved for each g : K → L and f : H → K since,

C(G, g ◦ f)(h) = (g ◦ f) ◦ h = g ◦ (f ◦ h)

= C(G, g)(f ◦ h)

= C(G, g)(C(G, f)(h))

= (C(G, g) ◦C(G, f))(h)

and C(G, 1H)(h) = 1H ◦ h = h and so C(G, 1H) = 1C(G,H).
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Orthogonality

So far, we have seen that a hom-set of the form C(G,H) for any object H in a category
C, is a Hermitian space when C satisfies the following conditions:

(D) C is equipped with a dagger † : Cop → C.

(G) C is equipped with an object G which is a simple generator.

(B) C has a zero object and any pair of objects H,K ∈ C has a dagger biproduct.

(E) Any pair of parallel morphisms f, g has a dagger equaliser.

(K) Any dagger monomorphism is a dagger kernel.

Our goal in this chapter is to understand the minimal structure needed on such a
category for the Hermitian space C(G,H) to form an orthomodular space, which is to
say that if F ⊆ C(G,H) then

F⊥⊥ = F =⇒ C(G,H) = F ⊕ F⊥.

We first need to look at the structure of a system of dagger subobjects of H.

5.1 Dagger Subobjects

Recall that a dagger subobject of an object H has a representative dagger monomor-
phism. Denote the collection of dagger subobjects as Sub†(H). There is a partial
ordering on Sub†(H) where for dagger subobjects m : M → H and n : N → H we
have m ≤ n if and only if there exists a morphism h : M → N such that m = n ◦ h.

H

M

m

;;

h
// N

n

cc
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Since n is a dagger monomorphism, h = n†m. In fact, this h is always a dagger
monomorphism since 1 = m† ◦m = (n ◦h)† ◦n ◦h = h† ◦n† ◦n ◦h = h† ◦h. To discuss
a notion of orthogonality, we direct our attention to the language of lattices.

Definition 5.1.1 (Lattices).

1. A lattice is a partially ordered set (L,≤) such that each pair of elements a, b ∈ L
have a least upper bound a ∨ b, called the join of a and b, and a greatest lower
bound a ∧ b, called the meet of a and b.

2. A lattice is complete when each subset M ⊆ L has a join
∨
a∈M a. This is

equivalent to the existence of a meet
∧
a∈M a for all M .

3. A lattice is bounded if it has a top element 1 :=
∨
a∈L a and a bottom element

0 :=
∧
a∈L a.

4. An orthocomplemented lattice or ortholattice is a bounded lattice where each
a ∈ L is equipped with an element a⊥ called the orthocompletent of a which
satisfies the following. For each a, b ∈ L,

(i) If a ≤ b then b⊥ ≤ a⊥

(ii) a = (a⊥)⊥

(iii) a ∨ a⊥ = 1, or equivalently1 a ∧ a⊥ = 0.

5. An orthomodular lattice is an ortholattice which satisfies the orthomodular law,

if a ≤ b then b = a ∨ (b ∧ a⊥).

Lemma 5.1.2. Dagger monomorphisms are stable under pullback.

Proof. We use the following construction. Let m be a dagger monomorphism; then
it is the dagger equaliser of 1H and mm†. Let h : N → H be any morphism and
let m′ : P → N be the dagger equaliser of h and mm†h. Then there exists a unique
morphism h′ : P →M such that

P h′ //

m′

��

M

m

��
N

h
// H

mm† //
1H

// H

commutes i.e. hm′ = mh′. To see that P is a pullback take x : V → N and y : V →M
such that my = hx. Then hx = my = mm†my = mm†hx and so there exists a unique
z : V → P such that x = m′z. Now my = hx = hm′z = mh′z which implies y = h′z
and so P is a pullback; in particular m is pulled back to a dagger monomorphism
m′.

Proposition 5.1.3. Sub†(H) is an ortholattice with the orthocomplement to a dagger
subobject m : M → H being m⊥ := ker(m†).

1a ∨ a⊥ = 1 is equivalent to a ∧ a⊥ = 0 since sending a 7→ a⊥ along with (i) establishes an order
isomorphism between L and Lop.
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Proof. We know from Proposition 4.1.11 and Lemma 4.1.15 with the fact that m is
dagger mono that (m⊥)⊥ = ker(ker(m†)†) = ker(cok(m)) = m. Now given subobjects
m : M → H and n : N → H with m ≤ n, there exists a unique h : M → N such that
m = n ◦ h. Since 0 = n† ker(n†) we have,

0 = h† ◦ n† ◦ ker(n†) = (n ◦ h)† ◦ ker(n†) = m† ◦ ker(n†)

hence there exists a unique k such that ker(n†) = ker(m†) ◦ k.

L

ker(n†)

{{

k

��
M

h

��

m // H K
ker(m†)
oo

N

n

;;

Therefore n⊥ = ker(n†) ≤ ker(m†) = m⊥. This makes

⊥: Sub†(H)→ Sub†(H)op : m→ m⊥

an order isomorphism.

The bottom of Sub†(H) is 0 = 0H : O → H since given any m, 0 = m ◦ 0 hence
0 ≤ m and the top is 1 = 1H : H → H since m = m ◦ 1H and hence m ≤ 1. Now
the meet of two dagger subobjects m and n is the pullback m ∧ n : P → H which we
know to be isomorphic to a dagger subobject from the previous lemma and so is itself
a dagger subobject.

P n′ //

m′

��

m∧n

  

M

m

��
N n

// H

Since ⊥ is an order isomorphism, we have (m ∧ n)⊥ = m⊥ ∨ n⊥. Consider m ∧ m⊥,
this is the pullback

P
p //

q

��

m∧m⊥

  

M

m

��
K

m⊥
// H

with mp = ker(m†)q and so p = m† ker(m†)q = 0 and similarly q = 0, so m ∧m⊥ = 0.
Therefore Sub†(H) is an ortholattice.

5.2 Completeness

If we want Sub†(H) to be complete as a lattice we need additional structure.
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Definition 5.2.1 (Directed Poset). A directed set or upward directed set (J ,≤) is
a nonempty poset J for which pairs of elements have an upper bound. That is, for
each a, b ∈J there exists a c ∈J such that a ≤ c and b ≤ c.

Example 5.2.2. If a poset J has finite joins, then it is directed.

Definition 5.2.3 (Directed Colimit). Let C be a category. A directed colimit is a
colimit to a functor D : J → C where J is a directed poset.

Definition 5.2.4 (Colimit condition). Let C be a dagger category. Let Cdm denote
the wide subcategory of dagger monomorphisms of C. Then C satisfies the colimit
condition when Cdm has directed colimits.

For the rest of this chapter, the category C satisfies conditions2 (D), (G), (B), (E), (K)
and the colimit condition. Let A be an arbitrary set and let Pfin(A) be the poset of
all the finite subsets of A ordered by inclusion. This has finite joins given by unions,
and so is directed. A functor

D : Pfin(A)→ Cdm

(R ⊆ S) 7→ (iR,S : DR ↪→ DS)

is then a directed diagram in Cdm and using the colimit condition we can form the
colimit

{iR : DR ↪→ CA}R∈Pfin(A)

where CA is the colimit object.

Proposition 5.2.5. Let H ∈ C. The ortholattice Sub†(H) is complete.

Proof. Consider a collection {mi : Mi → H}i∈I for some index set I of dagger subob-
jects of H. If R ∈ Pfin(I) then we can form mR : DR → H where mR :=

∨
i∈Rmi.

If R, S ∈ Pfin(I) and R ⊆ S then mR ≤ mS meaning there exists a morphism
iR,S : DR→ DS so that

H

DR

mR

;;

iR,S

// DS

mS

cc

commutes. This defines a functor

D : Pfin(I)→ Cdm

(S ⊆ R) 7→ iR,S : DR→ DS.

2Listed at the start of this chapter.
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Since Pfin(I) is a directed poset, we can form the colimit cI : CI → H with {iR :
DR→ CI}R∈Pfin(I) of D in Cdm such that

H

CI

cI

OO

DR

mR

DD

iR

;;

iR,S

// DS

mS

ZZ

iS

cc

commutes for all R ⊆ S ∈ Pfin(I). This cI is indeed the join of {mi}i∈I since when
given a dagger subobject e : E → H such that mi ≤ e for each i ∈ I, there exists a
morphism kR such that mR = e ◦ kR for each R ∈Pfin(I), and so there exists a unique
h : CI → E with kR = h ◦ iR, hence

H

D(R)
iR //

mR

::

kR

99CI
h //

cI

OO

E

e

bb

commutes and thus cI ≤ e for arbitrary e and so cI =
∨
i∈I mi.

5.3 Closed Subspaces

Recall that a subspace F of a Hermitian space C(G,H) is said to be closed when
F⊥⊥ = F . The set of all closed subspaces of C(G,H) is denoted

SubC(C(G,H)) := {F ⊆ C(G,H) | F⊥⊥ = F}.

Theorem 5.3.1. The function ϕ : Sub†(H)→ SubC(C(G,H)) which takes m : M →
H to ϕ(m) = {mg | g ∈ C(G,M)} is an isomorphism of ortholattices.

Proof. Notice that ϕ(m) = {f ∈ C(G,H) | f = mm†f}. We first show that ϕ
preserves orthocomplements which is to say,

ϕ(m⊥) := {m⊥g | g ∈ C(G,K)} = {mg | g ∈ C(G,M)}⊥ =: ϕ(m)⊥

Now h ∈ ϕ(m)⊥ if any only if for any g ∈ C(G,M) we have,

0 = 〈mg, h〉 = h†mg

which is equivalent to h†m = 0 due to the generator property of G, and equivalent to
m†h = 0. This means precisely that h can be written as h = ker(m†)k = m⊥k for a
unique k, in other words, h ∈ ϕ(m⊥). Therefore ϕ preserves orthogonal complements.
It follows that

ϕ(m)⊥⊥ = ϕ(m⊥)⊥ = ϕ(m⊥⊥) = ϕ(m)
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and so ϕ(m) is closed.

To see that ϕ preserves order, let m : M → H and n : N → H be dagger subob-
jects of H with m ≤ n. Any element of ϕ(m) is of the form mg for g ∈ C(G,M). Since
m = nh for some h : M → N , we have hg ∈ C(G,N) and so mg = nhg ∈ ϕ(n), hence
ϕ(m) ⊆ ϕ(n). To see that ϕ reflects order, let ϕ(m) ≤ ϕ(n). For any f : G → H we
have mm†f ∈ ϕ(m), and so mm†f ∈ ϕ(n); thus nn†mm†f = mm†f . The generator
property of G means that mm† = nn†mm† and so m = nn†m†, hence m ≤ n. Thus ϕ
reflects order and is also injective.

To see that ϕ is surjective, suppose that F ⊆ C(G,H) with F⊥⊥ = F and let m
be the join of all mi : Mi → F with ϕ(mi) ⊆ F . We show that F = ϕ(m).

(i) Let f ∈ F . By Proposition 4.1.12, f decomposes as,

G

e
%%

f // H

X

n

88

where n is a dagger monomorphism and e is an epimorphism. Then let y ∈ F⊥
so then e†n†y = f †y = 0, and hence n†y = 0. It follows for each x : G→ X that
(nx)†y = x†n†y = 0 and so nx ∈ F⊥⊥ = F for each x. It follows that ϕ(n) ⊆ F
and hence n ≤ m by definition of m. Therefore f = ne ∈ ϕ(m) and F ⊆ ϕ(m).

(ii) Let y ∈ F⊥. We first want to show that ym† = 0. Let y decompose as y = ne
with n a dagger monomorphism and e an epimorphism. Since mix ∈ F for
each x : G → Mi we have y†mix = 0 and by the generator property of G,
y†mi = e†n†mi = 0 and since e is an epimorphism n†mi = 0. It follows that
mi = ker(n†)h for some h and hence mi ≤ n⊥. Since m is the join of all mi’s it
follows that m ≤ n⊥ and hence m ⊥ n, thus y†m = e†n†m = 0. Now for each
g : G→M we have y†mg = 0 and so mg ∈ F⊥⊥ and therefore ϕ(m) ⊆ F⊥⊥ = F .

Lemma 5.3.2. A dagger subobject m : M → H and its orthocomplement m⊥ : M⊥ →
H define a dagger biproduct H ∼= M ⊕M⊥ with,

M
m // H
m†

oo
m⊥†

//M⊥m⊥oo

Proof. We know that m†m = 1, m⊥†m⊥ = 1, m⊥†m = 0 and m†m⊥ = 0. All that
remains is to show is that (H,m†,m⊥†) is a product of M and M⊥. Let X be any
object and f : X →M and g : X →M⊥. Then,

m†(mf +m⊥g) = m†mf +m†m⊥g

= 1f + 0g

= f
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and,

m⊥†(mf +m⊥g) = m⊥†mf +m⊥†m⊥g

= 0f + 1g

= g

and so mf + m⊥g : X → H is a candidate for the induced map for the product of M
and M⊥.

X

f

~~

mf+m⊥g

��

g

  
M H

m†
oo

m⊥†
//M⊥

It suffices to show that m† and m⊥† are jointly monic. Let x and y be arbitrary
morphisms with codomainH, supposem†x = m†y andm⊥†x = m⊥†y, then for z = x−y
we have m†z = 0 and m⊥†z = 0. Because m = m⊥⊥ = ker(m⊥†) and m⊥†z = 0, there
exists a w such that z = mw and so w = m†mw = m†z = 0 hence z = mw = m0 = 0
which implies x − y = 0 and therefore x = y. Thus we have a product. Dually, the
coproduct property also holds. Therefore H ∼= M ⊕M⊥.

Theorem 5.3.3. C(G,H) is an orthomodular space.

Proof. Let F be a closed subspace of C(G,H). Following from Theorem 5.3.1, there
exists a dagger subobject m : M → H such that ϕ(m) = F . Observe that for any
h ∈ C(G,H), mm†h ∈ ϕ(m) and m⊥m⊥†h ∈ ϕ(m⊥) = ϕ(m)⊥. It follows from the
previous lemma that 1H = mm† +m⊥m⊥† and so,

h = 1Hh = (mm† +m⊥m⊥†)h = mm†h+m⊥m⊥†h

Thus C(G,H) = ϕ(m)⊕ ϕ(m)⊥. Therefore C(G,H) an is orthomodular space.
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6
Equivalence

6.1 A Characterisation of Hilb

Suppose that a category C satisfies the conditions:

(D) C is equipped with a dagger † : Cop → C.

(G) C is equipped with a simple generator G.

(B) Any pair of objects H,K ∈ C has a dagger biproduct.

(E) Any pair of parallel morphisms f, g have a dagger equaliser.

(K) Any dagger monomorphism is a dagger kernel.

(C) C satisfies the colimit condition. (Definition 5.2.4)

We saw in chapter 5 that for any object H, the homset C(G,H) is an orthomodular
space with scalars C(G,G). In this chapter we show that C(G,H) is a Hilbert space
with scalars isomorphic to R,C or H by indirectly constructing an infinite orthonormal
sequence and applying Solèr’s theorem. We then establish an equivalence between the
category C and the category of C(G,G)-Hilbert spaces.
We will now see an application of the colimit condition, which will assist in many of the
upcoming arguments. To do this we will introduce notation for the finite biproducts
of an object. Let I be an arbitrary set and consider the directed poset Pfin(I) of all
finite subsets of I. Given any R ∈Pfin(I), we may take the biproduct of R copies of G,
denoted GR :=

⊕
RG. Now for each R, S ∈Pfin(I) with R ⊆ S, there exists a dagger

monomorphism iR,S : GR → GS as the canonical embedding. Consider the functor,

D : Pfin(I) → Cdm : (R ⊆ S) 7→ (iR,S : GR → GS)

this is a directed diagram in Cdm and so there exists a colimit {iR : GR → GI}R∈Pfin(I)

in Cdm. Because D is a functor, composition is preserved, so if R ⊆ S ⊆ T are finite
subsets of I, then iS,T ◦ iR,S = iR,T . For a singleton {a} ∈Pfin(I) we write ia := i{a}. As
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GI is not necessarily a biproduct, we distinguish the notation of the directed colimit
GI from the biproduct GI when I is finite. However, in a sense we may read GI as I
copies of G.

Remark 6.1.1. In the context of Hilb, GI will turn out to be l2(I).

Lemma 6.1.2. Let I be an arbitrary set. The orthomodular space C(G,GI) has an
orthonormal sequence indexed by I.

Proof. For each singleton {a} of I we have G{a} = ⊕{a}G = G along with the canonical
embeddings ia : G → GI . We show that the set of these embeddings {ia}a∈I form an
orthonormal sequence in C(G,GI).

Each ia is a dagger monomorphism since, 〈ia, ia〉 = i†a ◦ ia = 1. For each a, b ∈ I
with a 6= b, each ia is orthogonal to ib since,

〈ia, ib〉 = i†b ◦ ia
= (i{a,b} ◦ ib,{a,b})† ◦ i{a,b} ◦ ia,{a,b}
= i†b,{a,b} ◦ i

†
{a,b} ◦ i{a,b} ◦ ia,{a,b}

= i†b,{a,b} ◦ 1 ◦ ia,{a,b}
= 0

with the last equality being a consequence of ia,{a,b} and ib,{a,b} being the canonical
embeddings of the biproduct G{a,b} = G{a} ⊕G{b}.

Theorem 6.1.3. Let H ∈ C. The division ring C(G,G) is isomorphic to R,C or H
and C(G,H) is a right C(G,G)-Hilbert space.

Proof. Following from the Lemma 6.1.2, if I = N then C(G,GN) is an orthomodular
space by Theorem 5.3.3 and has an infinite orthonormal system {in}n∈N, so by Solèr’s
Theorem 2.3.15, C(G,GN) is a Hilbert space with scalars C(G,G) isomorphic to R,C
or H.

To see that C(G,H) is a Hilbert space, consider the orthomodular space C(G,GN⊕H).
Let i : GN → GN ⊕H and j : H → GN ⊕H be the canonical embeddings for GN ⊕H.
We then have the picture

C(G,GN ⊕H)

C(G,GN)

C(G,i)

66

C(G,H)

C(G,j)

gg

C(G,G)

C(G,in)

hh

The orthomodular space C(G,GN⊕H) has an infinite sequence {i ◦ in,N}n∈N, which is
orthonormal since for n 6= m,

(i ◦ in)† ◦ (i ◦ im) = i†n ◦ i† ◦ i ◦ im = i†n ◦ im = 0



6.2 Equivalence 39

and,

(i ◦ in)† ◦ (i ◦ in) = i†n ◦ i† ◦ i ◦ in = i†n ◦ in = 1

and so C(G,GN⊕H) is a Hilbert space. Now consider the canonical embedding C(G, j)
and projection C(G, j†) to C(G,GN ⊕ H). Since C(G,−) preserves composition, it
follows that C(G, jj†) is split idempotent,

C(G,GN ⊕H)

C(G,j†)
''

C(G,jj†) // C(G,GN ⊕H)

C(G,H)

C(G,j)

77

and so the image C(G,H) of C(G, jj†) is a Hilbert space.

6.2 Equivalence

Definition 6.2.1 (Dagger Functor). A dagger functor is a functor F : H→ K between
dagger categories (H, †) and (K, †) which preserves the dagger structure i.e. for each
f ∈ H(A,B),

F (f †) = F (f)†

Lemma 6.2.2. The functor C(G,−) : C → VectC(G,G) lifts to a dagger functor
C(G,−) : C→ HilbC(G,G).

Proof. In Lemma 4.2.7 we saw that C(G,−) : C→ VectC(G,G) is a functor. For each
H ∈ obC, C(G,H) is a Hilbert space and so to lift the codomain of C(G,−) to Hilb
we require that C(G,−) preserves the dagger and that C(G, f) is bounded for each
f : H → K in C. Let f : H → K be a morphism in C and then for each h ∈ C(G,H)
and k ∈ C(G,K),

〈C(G, f †)(k), h〉 = 〈f † ◦ k, h〉
= h† ◦ (f † ◦ k)

= (h† ◦ f †) ◦ k
= (f ◦ h)† ◦ k
= 〈k, f ◦ h〉
= 〈k,C(G, f)(h)〉

and so C(G, f †) is the adjoint to C(G, f); that is, C(G, f †) = C(G, f)†. It follows from
Theorem 2.3.9 that C(G, f) is bounded for each f ∈ C.

Definition 6.2.3 (Dagger Equivalence). A dagger equivalence between dagger cate-
gories (H, †) and (K, ‡) is a dagger functor F : H → K which is full, faithful, and
surjective on objects up to unitary isomorphism.

The rest of this chapter will be devoted to proving that C(G,−) : C→ HilbC(G,G)

is a dagger equivalence. We begin with faithfulness.
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Lemma 6.2.4. C(G,−) : C→ HilbC(G,G) is faithful.

Proof. Let f, g : H → K be morphisms of C and suppose C(G, f) = C(G, g). Then
for each h ∈ C(G,H) we have f ◦h = g ◦h, so by the generator property of G we have
f = g.

Lemma 6.2.5. The orthonormal system {ia : G→ GI}a∈I is an orthonormal basis for
C(G,GI).

Proof. We prove that if f : G → GI is orthogonal to ia for each a ∈ I, then f = 0.
It suffices to show that ker(f †) is an isomorphism. Suppose f ⊥ ia, then for each
R ∈Pfin(I) we have,

f † ◦ iR ◦ ia,R = f † ◦ ia = 0

hence f † ◦ iR = 0 since ia,R is the canonical embedding for the biproduct GR. This
means that iR is in the kernel of f † and so there exists a unique gR : GR → K such
that,

GR

gR

��

iR

##
K

ker(f†)
// GI

f†
// G

commutes. The set {gR : GR → K}R∈Pfin(I) forms a cocone over {iR,S : GR →
GS}R,S∈Pfin(I) since if R ⊆ S

ker(f †) ◦ gS ◦ iR,S = iS ◦ iR,S = iR = ker(f †) ◦ gR

and hence gS ◦ iR,S = gR. The universal property of the directed colimit GI means
there exists a unique g : GI → K for which

K

GI

g

OO

GR
iR,S

//

iR

;;
gR

DD

GS

gS

ZZ

iS

cc

commutes. It follows from the previous two diagrams that

GR iR //

iR

��

gR

  

GI

GI g
// K

ker(f†)

OO

commutes i.e. iR = ker(f †)◦g◦iR. The universal property of GI means ker(f †)◦g = 1GI

and thus ker(f †) is an epimorphism and thus an isomorphism. Therefore f † = 0 and
hence f = 0.
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Lemma 6.2.6. C(G,−) : C → HilbC(G,G) is surjective on objects up to unitary
isomorphism.

Proof. Let H be a Hilbert space; then from Theorem 2.3.11 there exists an orthonormal
basis B for H. Following from Lemma 6.2.5, we can construct the object GB such that
C(G,GB) has an orthonormal basis {ia}a∈B. Since |{ia}a∈B| = |B|, both C(G,GB)
and H have the same dimension. Therefore C(G,GB) ∼= H for each H ∈ Hilb by
Theorem 2.3.13.

Lemma 6.2.7. Let B be an orthonormal basis for C(G,H). Then H ∼= GB.

Proof. Since GB = colim{GR | R ⊆ B,R finite}, there exists a unique m : GB → H
in Cdm such that a = mia for each a ∈ B. We want to show that this m is a dagger
epimorphism i.e. mm† = 1, this is equivalent to C(G,mm†) = 1, which is equivalent
to mm†a = a for each a ∈ B. But a = mia by Lemma 6.2.5 and so

mm†a = mm†mia = mia = a.

Thus m is a dagger epimorphism and therefore H ∼= GB.

Lemma 6.2.8. Let C(G,H) be finite dimensional. Then for each bounded linear map
T : C(G,H)→ C(G,K), there exists a morphism t : H → K such that T = C(G, t).

Proof. If {ia : G→ H}a∈B is an orthonormal basis for C(G,H), then the ia exhibit H
as the biproduct GB. It follows that the T (ia) : G → K induce a unique t : H → K
with tia = T (ia) for each a.

K

G
ia

//

T (ia)

<<

H

t

OO

Since T is bounded and linear, it is defined by how it acts on each basis element ia but
T (ia) = tia = C(G, t)(ia) for each a ∈ B and so T = C(G, t).

Lemma 6.2.9. C(G,−) : C→ HilbC(G,G) is full.

To prove that C(G,−) is full, we need to show that each T : C(G,H) → C(G,K) in
HilbC(G,G) has a corresponding t : H → K in C. The case for when C(G,H) is finite
dimensional has been shown by Lemma 6.2.8. The approach to proving the infinite
dimensional case is as follows:

(i) Reduce to the case where dim C(G,H) ≤ dim C(G,K).

(ii) Reduce to the case where H = K.

(iii) Reduce to the case where T : C(G,H)→ C(G,H) is unitary map.

(iv) Prove that for each unitary U : C(G,H) → C(G,H) there exists a t : H → H
such that U = C(G, t).

Proof. (i) If dim(domT ) > dim(codT ) then consider T † : C(G,K) → C(G,H)
which has dim(domT †) < dim(codT †). If T † = C(G, s) for some s : K → H,
then T = C(G, s)† = C(G, s†).
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(ii) Suppose for each bounded linear map T : C(G,H) → C(G,H) there exists a
t : H → K such that T = C(G, t). Then if T : C(G,H) → C(G,K) is a
bounded linear map with dim C(G,H) ≤ dim C(G,K), there exist bases A and
B for C(G,H) and C(G,K) respectively. It follows that |A| ≤ |B| and so there
exists a dagger monomorphism iA,B : GA → GB, and by Lemma 6.2.7, a dagger
monomorphism m : H → K. It follows that T ◦ C(G,m†) = C(G, t) for some
t : K → K. And so

C(G,H) T // C(G,K)

C(G,H)
C(G,m)

//

C(G,1H)

::

C(G,K)

C(G,t)

::

C(G,m†)

OO

commutes, therefore T = C(G, tm).

(iii): Let T : C(G,H) → C(G,H) be a bounded linear map. Then by Lemma 2.3.14
there exists a family of unitary maps {U1, . . . , UN} and a family of C(G,G)-
coefficients {α1 . . . αN} such that T = α1U1 + · · ·+ αNUN . Let Ui = C(G, ti) for
some ti : H → K for each i ∈ {1, . . . , N}. Then for t = α1t1 + · · ·+ αN tN ,

T = α1U1 + · · ·+ αNUN

= α1C(G, t1) + · · ·+ αNC(G, tN)

= C(G,α1t1 + · · ·+ αN tN)

= C(G, t).

(iv) Let B be a basis for C(G,H), then by Lemma 6.2.7 it is enough to prove that
for a unitary map U : C(G,GB) → C(G,GB) there exists a t : GB → GB such
that U = C(G, t).

Since {ia}a∈B is an orthonormal basis for GB and since U is unitary, the col-
lection of U(ia) for each a ∈ B forms a basis in C(G,GB) and moreover

U(ia)
†U(ia) = 〈U(ia), U(ia)〉 = 〈ia, ia〉 = 1.

Thus {U(ia)}a∈B is a cocone in Cdm. The universal property of GB induces a
unique t : GB → GB such that,

GB

G
ia

//

U(ia)

>>

GB

t

OO

commutes for each a ∈ B hence U(ia) = C(G, t)(ia), and therefore U = C(G, t).

Theorem 6.2.10. The dagger functor C(G,−) : C→ HilbC(G,G) is a dagger equiva-
lence.

Proof. This follows directly from Lemmas 6.2.4, 6.2.6, 6.2.9
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Monoidal Structure

7.1 Monoidal Dagger Categories

Definition 7.1.1. A monoidal category (C,⊗, I, α, l, r) is a category C equipped with
a functor ⊗ : C × C → C called the tensor product, an object I called the monoidal
unit and has natural isomorphisms,

• associator :

α : (−⊗−)⊗− ⇒ −⊗ (−⊗−) , αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

• left unitor :

l : I ⊗− ⇒ 1C , lA : I ⊗ A→ A

• right unitor :

r : 1C ⇒ −⊗ I , rA : A→ A⊗ I

that satisfy the following triangle and pentagon identities:

(A⊗ I)⊗B
αA,I,B //

r−1
A ⊗idB

$$

A⊗ (I ⊗B)

A⊗B
idA⊗l−1

B

::

(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D // A⊗ ((B ⊗ C)⊗D)

idA⊗αB,C,D

$$
((A⊗B)⊗ C)⊗D

αA,B,C⊗idD

::

αA⊗B,C,D

**

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D

44
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Note that α, l and r also satisfy the naturality conditions where for f : A→ A′,g :
B → B′ and h : C → C ′

(A⊗B)⊗ C (f⊗g)⊗h //

αA,B,C

��

(A′ ⊗B′)⊗ C ′

αA′,B′,C′

��
A⊗ (B ⊗ C)

f⊗(g⊗h)
// A′ ⊗ (B′ ⊗ C ′)

I ⊗ A lA //

idI⊗f

��

A

f

��
I ⊗B lB // B

A

f

��

rA // A⊗ I

f⊗idI

��
B

rB // B ⊗ I

The original 1963 paper Natural Associativity and Commutativity by Saunders Mac
Lane [15] included three further conditions as axioms for a monoidal category. Max
Kelly showed that they follow from the axioms stated above. One of the extra condi-
tions is the following:

Theorem 7.1.2 (Kelly 1964 [13]).

I ⊗ I

lI

��

idI

##
I rI

// I ⊗ I

commutes.

This result is used in the following lemma.

Lemma 7.1.3. Let C be a monoidal category, then the hom-set C(I, I) forms a com-
mutative monoid under morphism composition and monoid unit as idI .

The following proof is known as the Eckmann-Hilton argument.

Proof. Commutativity is shown by the following commutative diagram,

I
w //

l−1
I

rI

��

z

$$

I
z

$$

l−1
I

rI

��

I
w // I

I ⊗ I
wI⊗idI

//

idI⊗z $$

I ⊗ I

idI⊗z $$
I ⊗ I

wI⊗idI

//

r−1
I

lI

OO

I ⊗ I

r−1
I

lI

OO

Definition 7.1.4 (Dagger Monoidal Category). A dagger monoidal category is a dagger
category (C, †) with a monoidal structure (⊗, I, α, l, r), such that,

• ⊗ : C×C → C is a dagger functor, in other words, for each pair of morphisms
f, g ∈ C,

(f ⊗ g)† = f † ⊗ g†
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• the associator α, left unitor l and right unitor r are unitary which is to say αA,B,C ,
lA and rA are unitary isomorphisms for each A,B,C ∈ obC.

Remark 7.1.5. The definition for a dagger monoidal category is also equivalent to saying
that † : Cop → C is a strict monoidal functor. In that case, the fact that the associator
and unitors are unitary follows automatically.

7.2 Scalar Multiplication

In Lemma 3.2.6 we defined a scalar multiplication

◦ : C(G,A)×C(G,G)→ C(G,A)

(f, λ) 7→ f ◦ λ

where ◦ is morphism composition in C. If category C is equipped with monoidal
structure (⊗, I, α, l, r) then a scalar multiplication can be defined as

• : C(A,B)×C(I, I)→ C(I, A)

(f, λ) 7→ f • λ

where f • λ is defined as

A
f•λ //

r

��

B

A⊗ I
f⊗λ

// B ⊗ I

r−1

OO

(1)

Theorem 7.2.1. Let C be a monoidal category with an object G as the monoidal unit.
Then • = ◦.

Proof. Let f ∈ C(G,A) and λ ∈ C(G,G). Then f ◦ λ = f • λ since

I ⊗ I f⊗λ //

id⊗λ
!!

A⊗ I
r−1
I

��
I

λ

��

rI

@@

I ⊗ I
f⊗id

==

r−1
I

!!

A

I

rI

==

id
// I

f

??

commutes.

7.3 Axioms for the category of Hilbert spaces

In the 2022 paper Axioms for the category of Hilbert spaces [9], Heunen and Kornell
show that the list of axioms:

(D) C is equipped with a dagger † : Cop → C.
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(T) C is equipped with a dagger monoidal structure ⊗ whose unit I is a simple
monoidal generator1.

(B) Any pair of objects H,K ∈ C has a dagger biproduct.

(E) Any pair of parallel morphisms f, g have a dagger equaliser.

(K) Any dagger monomorphism is a dagger kernel.

(C) C satisfies the colimit condition. (Definition 5.2.4)

results in the following:

Theorem 7.3.1 (Theorem 10, [9]). The dagger functor C(I,−) : C→ HilbC(I,I) is a
dagger monoidal equivalence with C(I, I) isomorphic to R or C.

In our characterisation, we replace (T) with

(G) C is equipped with a simple generator G.

which resulted in a dagger equivalence between C and HilbC(G,G), with C(G,G) iso-
morphic to R, C or H, from Theorem 6.2.10.

Axiom (T) implies (G), taking G to be I. In fact, in Hilb there is only one sim-
ple object (up to isomorphism), namely the 1-dimensional Hilbert space and so there
is no real choice here. Thus the axioms from [9] are stronger than those used here, but
they are also able to deduce a stronger result: a monoidal equivalence to Hilb rather
than an equivalence. Moreover, the possible scalars for Hilb exclude the quaternions
since C(I, I) will have composition equal to a tensor defined scalar multiplication by
Theorem 7.2.1 and so C(I, I) is commutative monoid by Lemma 7.1.3. Further obser-
vation reveals that neither Theorem 6.2.10 nor Theorem 10 [9] obviously implies the
other.

1 A monoidal generator in a monoidal category is an object G with the property that when given
a pair f, g : A ⊗ B ⇒ C, if f ◦ (h ⊗ k) = g ◦ (h ⊗ k) for each h : G → A and each k : G → B then
f = g.
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Appendix A: Decomposition of Bounded

Linear Operators

Lemma A.0.1. Let T : H → H be a bounded linear map on a complex Hilbert space
H. Then T is a linear combination of unitary linear maps.

Proof. Let T : H → H be a bounded linear map. Observe that T is a linear combina-
tion of self adjoint linear maps,

T =
1

2
(T + T †) +

1

2i
(iT − iT †).

Now that we have established T as a linear combination of self adjoint maps, we show
that a general self adjoint map is a linear combination of unitaries. Suppose S ′ : H → H
is a self adjoint linear map. We can rescale S ′ to

S :=
S ′

2‖S ′‖

so that ‖S‖ < 1. Consider 1− S2, this is clearly positive and self adjoint and hence so
is
√

1− S2. Define R :=
√

1− S2. We can then write

S =
1

2
(S + iR) +

1

2
(S − iR).

We claim that S + iR and S − iR are unitary linear maps. See that

(S + iR)(S + iR)† = (S + iR)(S† − iR†)
= (S + iR)(S − iR)

= S2 +R2 + i(RS − SR)

= 1 + i(RS − SR) (2)

The square root lemma (p196 Theorem VI.9 [17]) tells us that since 1−S2 is a positive
bounded linear map, there exists a unique positive linear map B such that B2 = 1−S2



48 Appendix A: Decomposition of Bounded Linear Operators

and moreover, B commutes with each C for which commutes with 1−S2. As R meets
these conditions, R commutes with each commuting C of 1 − S2 and in particular
SR = RS. Thus RS − SR = 0 and following from (2) we have

(S + iR)(S + iR)† = 1

and similarly (S+ iR)†(S+ iR) = 1 making S+ iR unitary. The same argument holds
for S − iR. Therefore T is a linear combination of unitary linear maps.

Lemma A.0.2. Let T : H → H be a bounded linear map on an infinite dimensional
real Hilbert space H. Then T is a linear combination of orthogonal (unitary) maps.

Proof. Let T ′ : H → H be a bounded linear map on a separable Hilbert space H.
Rescale T ′ so that

T =
T ′

2‖T ′‖

By Lemma 3.4 [4] T can be written in the form

T = I − US

where U is orthogonal (unitary) and S is symmetric (Hermitian). Using Lemma 3.1
[4] we can write H as the orthogonal sum of two copies of an infinite dimensional
S-invariant closed linear subspace of H which we’ll denote as H1 so that

H = H1 ⊕H1

and so S can be written as the direct sum1,

S = S1 ⊕ S2 : H1 ⊕H1 → H1 ⊕H1

As in Lemma 4.2 [4] we can write S1 ⊕ S2 as(
S1 0
0 S2

)
=

(
S1+S2

2
0

0 S1+S2

2

)
+

(
S1−S2

2
0

0 −S1−S2

2

)
. (3)

Setting,

A :=
S1 + S2

2
, B :=

S1 − S2

2

it follows as in Lemma 4.1 [4] that the first term in (3) can be written as(
A 0
0 A

)
=

1

2

(
A

√
I − A2

−
√
I − A2 A

)
+

1

2

(
A −

√
I − A2

√
I − A2 A

)
and the second term in (3) as(

B 0
0 −B

)
=

1

2

(
B

√
I −B2

√
I −B2 −B

)
+

1

2

(
B −

√
I −B2

−
√
I −B2 −B

)
which are linear combinations of orthogonal operators and thus so is S and hence so
is T = I − US. Therefore T ′ is a linear combinations of orthogonal operators.

1As pointed out by Halmos in the proof of Lemma 3 [6] “The underlying Hilbert space, if it is
not already separable, can be expressed as a direct sum of separable, infinite dimensional subspaces
invariant under the given operator. There is, therefore, no loss of generality in restricting attention
to separable Hilbert spaces.”
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Lemma A.0.3. Let T : H → H be a bounded linear map on an infinite-dimensional
quarternionic Hilbert space H. Then T is a linear combination of orthogonal (unitary)
maps.

Consider a quaternionic Hilbert space H as a real Hilbert space equipped with
operators Ri, Rj : H → H which satisfy R2

i = R2
j = −idH , RiRj = −RjRi and

R†i = −Ri and R†j = −Rj as in Example 2.2.7. The H-linear operators on H are R-
linear operators which commute with Ri and Rj. The proof for the quaternionic case
is then analogous to the real case but requires each operator to commute with Ri and
Rj.

Proof. Let T ′ be a bounded R-linear map. Rescale T ′ so that

T =
T ′

2‖T ′‖
.

Let R commute with T ′. Then

RT =
RT ′

2‖T ′‖
=

T ′R

2‖T ′‖
= TR.

Let Q := I − T , then RQ = QR and RQ∗ = Q∗R. Now Q is invertible since ‖T‖ =
1/2 < 1 and so following from Lemma 3.3 [4] there exists an orthogonal (unitary)
operator U such that

Q = U |Q|

where |Q| :=
√
Q∗Q, a symmetric (Hermitian) operator. By the square root lemma

R|Q| = |Q|R since R commutes with Q∗Q. It follows that

UR = Q|Q|−1R = QR|Q|−1 = RQ|Q|−1 = RU.

Let S := |Q| then S is self adjoint since,

(S∗)2 = S∗S∗ = (S2)∗ = (Q∗Q)∗ = Q∗Q∗∗ = Q∗Q = S2

hence S∗ = S. Now,

I − T = US =⇒ T = I − US.

We have established that R commutes with U and S. Now we want to show that
such an S is a linear combination of orthogonal operators that also commute with
R. We can use use the same argument as in the proof of Lemma A.0.2 to construct
such a decomposition for S, noting that the construction of Lemma 3.1 in [4] gives
a decomposition which is invariant not just under S but under any operator R that
commutes with S.
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